ちょっとした自作・工作をまとめたページです。

  • ごく最近の自作を掲載してます。古いものはトップページのリンクから見られます。

レーザーポインター自作(2017/09/26掲示)

  • しばらく前に作っていたものを発掘。秋月の小さい赤レーザーをFriskのケースに組み込んだもので、レーザーはグルーガンで固定した。3Vコイン型電池と小さいプッシュスイッチを付けた。たまに発表で使っているが特に反響はなし。
    pointer.png

実体顕微鏡の架台部分(2017/09/15作成)

  • 以前中古で買ったオリンパスSZ40の本体部分のみがあったので、ソーラボのパーツ、自作のアルミアダプタ、オリジナルマインドで買ったポリアセタール板を台として実体顕微鏡として使えるようにした。ソーラボの柱がちょっと過剰な感じ(重い)。実体顕微鏡外付けの円形LED照明を取り付けて、反射照明での観察ができる。溶接など少し荒い(汚い)もの用として、既存の実体顕微鏡と入れ替える予定。さすがに見え方はいい。
    sz40.png

50度ミラーマウントの作成(2016/12/16作成)

  • これは顕微ラマン用のパーツで、小さなミラーを50度傾けて取り付けるためのアルミの棒を加工したもの。下の写真の中央部分の斜めにカットされたアルミ棒がそれ。角度が変わっているので適当な既製品がなく自作した。棒自体は旋盤加工で、50度部分は簡易NCフライスで加工した。先端の丸いエンドミルを使って、横に移動した分、下にtan(40)だけ下げることで実現。下の写真ではソーラボの30 mmケージ用のキネマテッィクマウント(右側)とキューブと組み合わせている。キネマテッィクマウントはミラー角度調整のために流用している。
  • 使用時は、キューブの左側からくるレーザー光をミラーで上にはねて、キューブの上側に取り付ける予定のONDAX社特殊なダイクロイックミラーで下側に送られる。下側には対物レンズがつく予定。対物レンズで集められたラマン散乱光は上側に送られ、ダイクロイックミラーを透過して、分光器の方へ送られる。
    mirror_mount_in_cagecube.png

チューナブルフィルター用アダプター(2016/12/08作成)

  • 2017年度の知恵の見本市(12/1)で展示予定。
  • 下記のサーボモーターコントローラーを買った理由は、角度によりチューナブルなバンドパスフィルターを作るためであり、デジタルサーボモーター2つを固定して、かつソーラボの光学ケージに組み込むためのアダプター板を作成した。オリジナルマインドで買った黒のポリアセタール板(8 mm厚)を、別項に書いている簡易NCフライス装置を使って加工した(サーボモーターの入る四角い穴など)。下にはモーターを取りつけたアダプターの写真を示す。モーターに付いているT字型のものはフィルターホルダーである。フィルターホルダーはフィルターメーカー提供のもので、ソーラボ側の光軸高さと合わせるために旋盤で2.8 mmくらい短くして(固定ネジぎりぎり)、かつモーターの軸に固定できるようにフィルターホルダーの穴を5.9 mmに広げた。
    servomotor_plate.png
  • 上記をソーラボのケージに組み込んだのが下の写真で、ソーラボの60 mmケージ用のアダプターで板を固定している。X字型のものはその60 mmケージを30 mmケージに変換するためのアダプター(ソーラボ)。私は全て30 mmケージを使って光学系を組んでおり、この場合のように光学素子自体が大きくて十分スペースがないところでは60 mmケージアダプタに変換して使っている。
    tunable_filters_holder.png
  • Semrock社(オプトラインから購入)のVersa_Chromeチューナブルショートパスフィルターとチューナブルロングパスフィルターを取り付けたのが下の写真。角度で透過率の立ち上がり位置が変化するため、両者をちょうどよい角度にすると比較的幅の狭い(~1 nm)バンドパスフィルターとして働かせることができる。Versa_Chromeフィルターを2枚使って幅の狭いバンドパスフィルターとするアイデアは数ヶ月前に偶然思いついたのだが、検索するとほぼ同じアイデアを既に発表している方がいたので残念ではあったが、実際に必要があったので作ってみたのが今回のもの。写真のフィルターの位置は532 nmレーザー(秋月のパーツを使ったもの)を利用して、ちょうど532 nm付近だけ透過するように2つのフィルターの角度をサーボモーターで調整した状態。この状態で2つのフィルター越しに部屋の照明を見ると、ちょうど532 nmレーザーの色になっている。今使っているフィルターだと回転により500~560 nmでバンドパスフィルターとして働かせることができる。他の波長のためには別のフィルターと交換する必要がある(現在手持ちは写真のものだけ)。2つのフィルターを逆方向に回転させているのは、光軸のズレを小さくするためであったが、後でこれだと透過光が均一ではなくなることに気づき、同じ方向に回転させるように変更した。
    homemade_BPF.png
  • その後、デジタルサーボコントロールキット付属の可変抵抗では細かい調整が難しいので、ポテンショメーターに変更した。性能を分光器で調べたところ、大体仕様から予想される1.0~1.5 nm程度の半値幅が得られている。コントロール基板とポテンショメーターを「アクリ屋」さんで加工してもらった黒アクリル板に取り付けてみた(下図)。
    servo_surface.png
  • 本格的に使うようになるとPCから制御できないとダメです。もともとコントローラー基板は、外付けの3個の可変抵抗が乗っかっている別基板を5ピンのコネクター(CN10)で接続するようになってます(2つ下の写真)。ここの役割は可変抵抗の両端に5Vかけて、中央の電圧をコントローラー側のAD変換で読ませています。したがって、ここのポートに0~5 Vを与えることで回転角を制御できることになります。そこでCONTEC社からUSB接続のアナログ入出力変換器(12 bit DA 2ch)を購入しました。早速DA変換の出力をコントローラーのコネクターに接続して、CONTEC社提供のテストプログラムをPC上で動かして、アナログ電圧を変えて、サーボモーターの回転角度が実際に変わることを確認できました。これでPCからの制御ができそうです。制御用プログラムを今後作る予定です。

サンプル管瓶用のホルダー(2016/09/07作成)

  • 研究室ではアズワンのサンプル管瓶(2.2 cc)をよく使っているが、そのままデシケータに入れておくと、すぐ倒れる(10月の地震でも沢山倒れた)。製品で気に入るものがなかったので、アクリルで10個用ホルダーを作成している。最初はアクリル板の穴加工をNCで自分で加工していたが、エンドミルに融けたアクリルが付着して、穴径が大きくなったりと歩止まりが悪いので、最近はアクリル加工屋さんに加工を依頼している。私が依頼しているところは、ウェブから簡単に穴のサイズ、位置指定などができる。
  • なので実際の工作は、アクリル加工屋から届いた穴開きの板と同じく頼んだアクリル棒4個を、接着剤の「アクリルサンデー」で板に接着するだけ。今回10個分作成。なぜか今回穴が少し小さめで、管瓶にラベルを貼ると入らない。アクリル加工屋にクレームをつけてもよかったのだが、既にアクリル棒を付けた後に気づいたので、リーマーで穴を少し広げてなんとか対応した。
    sample_holder.png

サーボモーターコントローラー(これは秋月のキット)(2016/08/02作成)

  • 光学部品2個を回転制御する必要が出てきたので(上記参照)、秋月の「3サーボ・アクチュエーター・キット」を購入した。以前も秋月でサーボ・アクチュエーターキットを買ったことがあるが、それは1回路のみのもので、顕微ラマン分光の回転NDフィルターの制御ではまだ現役で使っている。今回入手したのは新しいキットで、デジタルサーボモーターに対応し、モーター3個をこれ1台で制御できる。今回2系統モーター制御する必要があり、またデジタルサーボモーターを試してみたかったのでこのキットを選んだ。下の写真に示したように、液晶ディスプレイ付きで、設定に3個の可変抵抗を使う。デジタルサーボモーター(SAVOX SG-0351)2個も秋月から買った。
  • マニュアル通りに半田付けすれば完成。5Vの電源をつなげば、デジタルサーボモーター2個が動作した。アクション位置での安定性についてはわずかにゆらいでいる。写真はダイレクトモードの設定で、可変抵抗を回すと、それに応じてサーボーモーターが回る。設定モードにすれば、常時位置、アクション位置、回転速度を可変抵抗で設定できる。これは普通の使い方で、信号やスイッチにより、定時位置とアクション位置を移動する。設定後は液晶と可変抵抗は外すことができる。私の用途はダイレクトモードで使うことになると予想される。仕様上は角度は0.2〜0.3度程度で制御できる。
    servo_controller.png

ラマン分光装置ビームスプリッター出し入れ制御部分の改造(2016/06/21作成)

  • これも下記のラマン分光装置の改造の一環。「ラマン分光器用制御装置」の実際に制御する部分の1つである。我々のラマン分光装置では、ペリクルビームスプリッターを使って、それを光路に入れることで観察用CCDへ光を送ったり、照明用光源を導入したりしている。しかしラマン測定時にはビームスプリッターは邪魔であり、ラマン散乱光を1枚で半分捨ててしまうので、これらのビームスプリッターは測定時には光路から外した方がよい。そのため、エアーシリンダーを使って、ビームスプリッターの出し入れを行っている。そのエアーシリンダーを電気的に制御しているのが、ソレノイドバルブであり、今回の制御部分である。下の写真では中央に3つソレノイドバルブが見えている。エアーシリンダーを出し入れするので、上下に2系統の電線が出ている。ここにDC24Vかけると、バルブが開閉する。これ自体の制御信号は下記の「ラマン分光器用制御装置」からくる。もともと2回路作ってあったが、今回改造して1回路増やして、基板(右上)も新しく作った。下記「ラマン分光器用制御装置」ともつないで、動作を確認した。今回はブロックターミナルを活用して、外部からくる線の接続が簡単なように、また分解する時に半田付けを外したり、線をカットしないでいいようにした。現在活躍中。
    air_valves.png

実験用LED照明(秋月の製品そのまま)(2016/06/14作成)

  • これは本当にちょっとした工作。実験で使うLEDランプが2種必要だったので、秋月電子通商で適当なものを買って、半田付けした。3 WのLED2種(白、黄色)、定電流LEDドライバー、12V電源アダプタ、アルミ放熱板を全て秋月で購入。LED,ドライバーと電源アダプラ用プラグを半田付けし、放熱板に高熱伝導用両面テープで固定するだけ。電源につないでみると直視できないくらい明るい。十分使えそう。
  • 白LEDは光学装置の光源として使う予定で、最初ファイバー光源を使ったが、光が広がりすぎ、点光源により近いものが必要だったため。黄色LEDは、532 nmレーザーを使ったある分光実験の時にバックグラウンドノイズを減らすために使う。この実験ではなるべく外光が入らない様にしないといけないが、真っ暗にしてしまうと装置自体の調整も難しい。そこでこの黄色LEDを使照明代わりにするつもり。検出器には532 nm付近のバンドバスフィルターをつける予定なので、532 nm以外の波長なら、赤や青でもいいが、見易さから黄色を選んだ。
    LED-lamps.png

ラマン分光器用制御装置(秋月の製品を一部利用)(2016/05/30作成)

  • ラマン分光器用制御基板)(2016/05/30) :連合学会前にはパーツは集まり、ケースの加工もほぼ終わっていたので、連合学会後に工作を再開した。今回作るのはラマン分光器用の制御装置で、落射照明、透過照明光源のON/OFF,レーザー光路にある回転NDフィルターの2位置制御(要はレーザー光が出てくる位置と最大に減光している位置)、ビームスプリッターを光路に出し入れ(2箇所)をする。以前もほぼ同等品を作っていたが、そちらはPrincetonの冷却CCDカメラ用コントローラー内臓のIO出力を利用するものであった。古い検出器のコントローラは大きくて、その中にIO出力もあったが、今度導入する新しいCCDカメラにはもはや独立したコントローラはなく、そのため別途制御回路が必要となる(CCDカメラ実物が納品されてみると、IO出力は実際には利用可能だった…)。今回の場合は、パソコンからUSB-シリアル変換器を介して、ANDDIOという秋月のデジタルIOモジュールを制御する。ただしこれではリレーなどは直接制御できないので、インターフェース回路が必要となり、今回自作した部分になる。なお、古い方は非常時用に稼働可能状態で残しておくつもり。
    circuit-Raman.png
  • テスト用のプログラムをMac上のXojoで数分で作った(単に6つのチャンネルをON/OFFするボタンがあるだけ)。本回路、秋月のANDDIO、シリアル-USB変換器、電源アダプターを仮につないで、動作を確認した。シリアル-USB変換器は下図の左上側に見えている小さい基板で(これも秋月から)、Macにつないで問題なく動く。
    circuit-Raman2.png
  • 下図はケースに納めたところ(前面部分の穴をずらしてしまったが)。ANDDIOは取り付けネジ穴もなく、固定ができないので、結局両側のRS232C用のコネクター用部分のネジ穴を使って、パネル前面、後面で保持するようにした。宙に浮いている。
  • 実際には分光器の測定ソフトがWindows PCでしか動かないので、これの制御プログラムも同じWindows上から使えた方がよい。Xojoの場合、Mac上で作って、Windows用にクロスコンパイルすることもできる(そのライセンスが必要)。それならと、昨日のプログラムをベースにサクッと作ってしまった。
  • Macで完璧に動くが、クロスコンパイルしたものを制御用Win7マシンにコピーして動作させたところ、少し動作がおかしい。複数チャンネルを一度に制御する部分がうまくいかない。タイミングの問題なんだろうが、待ち時間を入れたりしてもダメだった。Macでは問題ないのだが。一時に1つだけ動かすこと自体は問題ないので、ちょっと不便だが、その状態で使用中。そのうち、Visual Studioへプログラムを移して、Winspecとも連携させる予定。
  • その後、冷却CCDが納品されて同封されていたマニュアルを読んだところ、実際にはTTL入出力8ビット分が使えることが分かったが、まあそのまま使用中。
    circuit_in_case.png

APD検出器用電源(秋月のキット利用)(2016/04/27)

  • 浜松ホトニクスのAPD検出器モジュールを買ったところ、ノイズの少ないDC12 V電源が必要だということが分かりました。精密な測定をする予定なので、安価なスイッチング電源アダプターでは不安があります。秋月電子通商でちょうど「超ローノイズ・プログラマブル電源キット」を見つけたので買ってみました。これはTIのTPS7A4700を使用したもので、1.4〜20.5 Vまで0.1 Vステップで出力を設定できます。
  • キットといっても、半田付けするのは、ターミナル2個と電解コンデンサー1個だけです。キット取説の推奨どおりに、放熱器も取り付けました。基板上のDIPスイッチで、0.1 V単位で出力電圧を設定できます。APD検出器モジュールの取説では+/-0.1 V精度を要求されていたので、都合よく合ってます。実際に入力側にこれも秋月で買ったスイッチング電源アダプターDC15 Vをつないで、出力が12 +/1 0.1 Vに入るようにDIPスイッチで調整しました。
  • それをケースに電源用スイッチ、DCプラグとともに取り付けます。LEDランプでも付けたいところですが、APD検出器使用時に邪魔にしかならないので止めました。ところで、放熱器は基板の反対側に取りつけるため、基板両側にターミナルブロック等の突起物があり、基板をケースに固定することができません。探したところ「垂直取付用ブロック」というものがあることが分かりました。これは金属立方体6面にM3の穴があいているものです。これを使えば基板を立てて固定できるので、今の場合に使えそうです。それをまた秋月で買って、基板を立ててケース内に固定することができました。ケースのバックパネルのDCジャックと出力用配線の穴、フロントパネルのスイッチ用穴は簡易NCフライスであけてます。
  • APD検出器モジュール側の電源端子はDsub 9pin(male)なので、female端子の半田付けできるものを買って、配線しました。まだ実際にはAPD検出器モジュールで動作試験はしてません。その前に光学系を作らなくては。
    APD_supply.png

トップ   編集 凍結解除 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2017-09-15 (金) 16:11:53 (66d)