Quick_Pressについて (2012/03/16 created)

QuickPress.png

概要

  • (2017/09/11) Quick_Pressを元々考案し、販売もしていたJohn Holloway教授が9/6に亡くなられました。ご冥福をお祈りします。既に経営からは退いていたので、装置は今後も販売されると思います。
  • ここで述べているQuickpressは高圧装置で、ソフトウエアではありません。
  • エンドロード(シリンダー締め付け)なしのピストンシリンダー高圧装置(Quick_Press)が新しく実験室に入りました(購入したのは薛教授)。1/2インチ用のシリンダーとピストンが使えます。この1/2インチの場合、常用では圧力2 GPaまでです。この装置はJohn Holloway教授 (Arizona State University)がピストンシリンダー装置をコンパクトに改良した装置で、色々と工夫がなされており、卓上にも置けます。上の写真の卓上左側の装置が本体。上に乗っている黒いものは電源トランス。左側には実験後の高圧セル引き抜き用のラムがあります。机の下にあるのは冷却水循環装置です(これは日本製でこちらで準備)。
  • Depths of the EarthというHolloway教授が作った会社が製作してます。Holloway教授は大学からも会社からも既に引退していて、Dr. Tracy Paulが現在は販売してます。
  • 使用マニュアルをアップしました(2015 5/22)。

装置の特徴

  • 普通のピストンシリンダー装置ではシリンダーの締め付け用の加圧機構が必要であり、ピストンを押すための別途の加圧系が複合したプレス(Kennedy式)を使うのが一般的ですが、締め付け用の方がラムもプレスも大きなものが必要で、かなり大掛かりなものとなります。この装置ではシリンダーの締め付けはしないことで、発生可能な圧力は少し下がりますが、装置自体は非常にコンパクトになります。
  • 普通のピストンシリンダー装置では、シリンダーなどの重い部品を手で持ち上げて、プレスの懐や別の設置されている試料押し出し回収用のプレスに移動させる力仕事が必要となりますが、この装置ではシリンダーなどを持ち上げる必要がないように工夫されています。

装置の状況

  • 立ち上げは終了し、現在は合成実験などに使用してます。
  • 防御用のポリカーボネート板を自作して、設置しました(2014 9/10)。2面のみです。下の写真がその状況。加圧時と試料押し出し時に必ず設置して、板で遮蔽されている側でハンドプレスなどの作業をしてください。
    shield.png
  • 高圧セルは塩(塩化ナトリウム)のスリーブを使った高圧セルを使います。温度により厚さの異なる2種類の塩スリーブを使い分けます。厚い方はパイレックスガラスなしで塩スリーブのみとなります(1000 ˚C以下で使用)。実験のためには、塩のスリーブを押し出し用ラムを使って予め準備しておく必要があります。また、試料周りのスリーブはMgOセラミックスなどで自作する必要があります。塩化ナトリウムの粉がプレス付近に散らばるために、実験後はきれいにすること(自分に)。また、治具をさびさせないこと(これも自分に)。
  • パイレックスと塩化ナトリウムのセルの場合、1200 C以上の実験でヒーターが不安定になります。調べるといくつかのラボでは、ヒーター及びパイレックスガラス変形(剪断)を少なくするために、予め隙間を用意している。たとえばBoettcher et al., Rev. Sci. Inst., 52, 1903 (1981); Pickering et al., Am. Mineral., 83, 228 (1998).その後、色々試したが、特に何もしなくても1600 Cくらいまでは上がるようになった。
  • 塩化ナトリウム以外のセルのテスト
    • 融点はフッ化カルシウムが高い。
    • 薄いスリーブの場合(パイレックス使用)、フッ化カルシウム単体ではスリーブ作成が難しかった(取り出し時に割れる)。塩化ナトリウムとフッ化カルシウムを重量で1:1混合物の場合をテスト。この場合は薄いスリーブでも作成可能であった。
    • 厚いスリーブの場合(パイレックスなし)、フッ化カルシウム単体でも何とかスリープは作成可能。ただ取り出し時に端がかける。また、1度では難しいので、半分の長さで2個作るようにした。600 ˚C, 4時間焼く。加熱テストの結果は、塩化ナトリウム+パイレックスの時よりも電力を必要とするが、ヒーターの不安定性は抑えられていた。しかし1300 Cでは電力が水冷の限界に近いようだ。断熱性のよいスリーブが必要。
    • Walker教授らが使っている炭酸バリウムの場合は、厚くてもスリーブ作成は難しかった。何らかのバインダーが必要。
  • 塩セルはtalcセルよりも試料における酸素分圧が低く、メルト中の炭酸塩からグラファイトが生じる。これを改善するために塩セルに工夫を試みている。
    • 塩スリーブにMg(OH)2を混ぜる。これは脱水により水が放出され、酸化的になることを期待。Mg(OH)2を5 wt%添加で試す。成形性は塩単体よりもいい感じ。1度実験を行なったが、試料では炭酸塩からグラファイトが生じていた。
    • Mg(OH)2を5 wt%に加えて、10 wt%のFe2O3を添加して酸化的な環境にする。スリーブの成形は問題なし。赤いスリーブとなった。
    • Fe2O3のディスクを作って試料の近くに置く。これはFe2O3のみで、塩のロッド用の治具で作成。成形性は問題なし。ある程度は効果がある。
    • 熱電対は最初よく切れたが、TC保護管の長さを少し短めにするとあまり切れなくなった。

温度制御装置

  • 温度制御装置もDepthから買ったものを使ってますが、Omegaの温度コントローラーがいまいち使いづらい。チノーの使い慣れたKP1000と交換することを計画中。そのまま交換とはいかず、少し回路の改造が必要となる。

シュウ酸銀の作り方

  • シュウ酸銀(Ag2C2O4)は高温で二酸化炭素と銀に分解するため、高圧実験で二酸化炭素の源として使われます。試料室内では、シュウ酸銀はPt箔などに包んでおき、試料との直接の接触は避けるようにする。
  • 手袋等必要な安全対策をする。
  • シュウ酸第二水和物を水20 mlに1.4グラム溶かす。少し時間がかかるが全部溶ける。
  • 硝酸銀1グラムを加える。すぐに白い沈殿ができる。水溶液として加える場合はいいが、直接加える場合は白濁して全部溶けたのかよく見えないが、溶解は早い。
  • 沈殿物を濾過する。余分なものを無水アルコールで流す。
  • 乾燥させる(140 ˚Cで激しく分解するので乾燥温度に注意)。フィルターから分離する。
  • 注意
    • 光、摩擦でも分解するらしいので、保存に注意する。保存容器をアルミ箔で覆っておく。
    • フィルターと分離する時にこすり取ると、繊維などが混入して、実験に使用できなくなる。
    • 140 ˚C付近で白煙をあげて急激に分解する。乾燥減量で純度を見積もる時は注意が必要。白金チューブ等に少量を封入しておいて、分解後にチューブに穴を開けて二酸化炭素を逃がし、減量を測定する。
    • なおシュウ酸と硝酸銀は劇物となっており、管理対象ですので、使用した場合は日時、使用量を専用のノートに記載します。専用保管庫に鍵をかけて保存します。

トップ   編集 凍結解除 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2017-09-11 (月) 19:05:45 (73d)