*Micro-Raman spectroscopy of Kanzaki's laboratory [#vaa6b0e6]

CENTER:&ref(http://www.misasa.okayama-u.ac.jp/~masami/images/Raman-2015.png);

CENTER:Micro-Raman spectroscopy @ ISEI (setup for externally heated DAC)

**Current condition of the spectrometer: (2015 11/18) [#c2e32021]
-Laser: 488 nm Ar ion laser (100 mW max)
-Optics: ONDAX filter installed & aligned (for terahertz)
-Liquid nitrogen dewar (10L): empty

*Details of the spectrometer [#h34cce3d]
-Details are given in [[manual:http://www.misasa.okayama-u.ac.jp/~masami/pdfs/raman-man2e.pdf]].
-Schematic diagram of the spectrometer is shown below.
CENTER:&ref(http://www.misasa.okayama-u.ac.jp/~masami/images/raman-diagram.png);

**Spectrometer hardware (home-build) [#d05396cb]
-Lasers available: 
--CW air-cooled Ar ion laser: 488 & 514.5 nm, max 100 mW (TEM00)
--CW solid 785 nm laser for NIR 785nm, max 50 mW
--CW solid 532 nm laser; max 100 mW
-Imaging spectrometer: Acton Spectra_Pro 500i (f=500mm), three gratings:300, 1200, 1800/mm
-Detector: Roper SPEC-10 1340x100 pixel, liquid nitrogen cooled CCD detector
-Optical system: Mostly constructed using Thorlab's 30 mm cage parts
--scattering geometry: 180˚ back scattering
--objective lenses: various magnification Mitsutoyo's long working distance objective lenses available.
-Optical filters: 
--ONDAX's volume Raman notch filter for 488 nm: terahertz region
--Semrock's Raman edge filters for 488, 514, 532, 632, 785 nm
--Semrock's dichroic filters for 488, 514, 532, 632, 785 nm
-automation: servo-motor controlled rotational ND filter, air-driven retractable half mirrors
**Spectrometer softwares [#u723e0db]
-Measurement software: Winspec/32 software (Roper)
-additional softwares: home-build Raman automation program call Winspec/32 functions, ruby pressure calculation, 2D mapping program written in Visual Basic.

*Applications of the spectrometer [#f7016707]
**Phase identification of natural samples [#rb0938e6]
-Raman spectroscopy is especially good to identify small diamond and coesite minerals in natural rocks. Automated XY stage is available for 2D imaging (but slow...).
**Phase identification of synthetic samples [#i32014c6]
-Laser beam can be focused to about 1 micrometer in diameter, thus very small sample can be measured. Often, a phase not detected by powder X-ray diffraction is identified by Raman spectroscopy, such as graphite, carbonates.
**High-temperature measurement at 1 bar [#ff561770]
-Wire-heater device is available for high-temperature measurement up to 1500 ˚C (for Pt wire). A photo during wire-heating run is shown below.
CENTER:&ref(http://www.misasa.okayama-u.ac.jp/~masami/images/HT-Raman-photo.png);~

-Example of high-temperature Raman spectra of a phosphate (Kanzaki, unpublished). A transition was detected between 800 and 850 ˚C using wire-heater. 
CENTER:&ref(http://www.misasa.okayama-u.ac.jp/~masami/images/highT-Raman-example.png);

**Pressure measurement using ruby fluorescence method [#obd9691f]
-Ruby fluorescence can be also used to determine a pressure in diamond anvil cell using this spectrometer (much easier than Raman scattering). Shown below are spectra of ruby fluorescence at 0 GPa (top) and 10 GPa (bottom). Note positional change of ruby fluorescence peaks (R1 and R2) with pressure. By measuring pressure-induced peak position shift, pressure of small ruby chip in the diamond anvil cell can be estimated. Central window is my application program to calculate pressure from R1 peak positions from these spectra.
CENTER:&ref(http://www.misasa.okayama-u.ac.jp/~masami/images/ruby2.png);

-Example of high-pressure Raman spectra of a silicate. Pressure-induced transition was observed between 5.0 and 5.5 GPa (Kanzaki, unpublished).
CENTER:&ref(http://www.misasa.okayama-u.ac.jp/~masami/images/highP-Raman-example.png);

*Information for users [#n8188fd7]
**Manuals [#m32a4894]
-Manual is available in both English and Japanese. For English manual (pdf), click [[here:http://www.misasa.okayama-u.ac.jp/~masami/pdfs/raman-man2e.pdf]].For Japanese version (PDF), click [[here:http://www.misasa.okayama-u.ac.jp/~masami/pdfs/raman-manJ.pdf]].
**Text books of Raman spectroscopy [#wd2b4cb1]
-Raman spectroscopy applied to Earth Sciences and cultural heritage, EMU Notes in Mineralogy vol. 12, Edited by J. Dubessy, M.-C. Caumon and F. Rull, European Mineralogical Unions, 2012.
-Modern Raman Spectroscopy - A Practical Approach, by E. Smith and G. Dent, J Wiley&Sons, 2005 (Paperback)
-Practical Raman Spectroscopy", D.J.Gardiner and P.R. Graves (Eds), 1989, Springer-Verlag.
-"Raman Microscopy", G. Turrell & J. Corset Eds., 1996, Academic Press.
-Also see spectroscopy issues of "Reviews of Mineralogy and Geochemistry"
**Raman spectra database [#ec764f4a]
-[[ENS-Lyon:http://www.ens-lyon.fr/LST/Raman/index.php]] Natural minerals
-[[University of Parma:http://www.fis.unipr.it/phevix/ramandb.php]] Minerals
-[[RRUFF database:http://rruff.info]] Minerals Raman, XRD, IR database. Also Crystalsleuth software provided from same site can be used to identify minerals from measured Raman spectra (for Windows). This program is installed in the PC in the Raman lab.
**Published papers in which this spectrometer is used [#h893aa3c]
-Kanzaki, M., X. Xue, J. Amalberti and Q. Zhang (2012) Raman and NMR spectroscopic characterization of high-pressure K-cymrite (KAlSi3O8.H2O) and its anhydrous form (kokchetavite), J. Mineral. Petrol. Sci., 107, 114-119.
-Tomioka, N., Kondo, H., Kunikata, A. and Nagai, T., Pressure-induced amorphization of albitic plagioclase in an externally heated diamond anvil cell, Geophys. Res. Lett., 37, L21301, 2010.
-Xue, X., Kanzaki, M., and Fukui, H., Unique crystal chemistry of two polymorphs of topaz-OH: a multi-nuclear NMR and Raman study. American Mineralogist, 95, 1276-1293 (2010)
-S. Zhai, M. Kanzaki, T. Katsura, E. Ito, Synthesis and characterization of strontium-calcium phosphate gamma-Ca3-xSrx(PO4)2 (0≤x≤2), Materials Chemistry and Physics, 120, 348-350, 2010.
-Malfait, W., The 4500 cm-1 infrared absorption band in hydrous aluminosilicate glasses is a combination band of the fundamental (Si,Al)-OH and O-H vibrations. Am. Min., 94, 849-852, 2009.
-N. Noguchi, K. Shinoda and K. Masuda, Quantitative analysis of binary mineral mixtures using Raman microspectroscopy: Calibration curves for silica and calcium carbonate minerals and application to an opaline silica nodule of volcanic origin, Journal of Mineralogical Petrological Sciences,104, 253-262, 2009
-B. Mysen, S. Yamashita, and N. Chertkova, Solubility and solution mechanisms of NOH volatiles in silicate melts at high pressure and temperature - amine groups and hydrogen fugacity, Geochim. Cosmochim. Acta, 93, 1760-1770, 2008.
-M. Kanzaki, Elastic wave velocities and Raman shift of MORB glasses at high pressures-Comment, Journal of Mineralogical Petrological Sciences, 103, 427-428, 2008
-S. Zhai, A. Yoneda and E. Ito, Effects of pre-heated pyrophyllite gaskets on high-pressure generation in the Kawai-type multi-anvil experiments, High Pressure Research, 28, 265-271, 2008.
-T. Ota, K. Kobayashi, T. Kunihiro and E. Nakamura, Boron cycling by subducted lithosphere; insights from diamondferous tourmaline from the Kokchetav ultrahigh-pressure metamorphic belt, Geochim. Cosmochim. Acta., 72, 3531-3541, 2008
-S. Zhai and E. Ito, Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle, Phys. Earth Planet. Int., 167, 161-167, 2008.
-X. Xue, M. Kanzaki and A. Shatskiy, Dense hydrous magnesium silicates, phase D and superhydrous B: New structural constrains from one- and two-dimensional 29Si and 1H NMR, Am. Mineral., 93, 1099-1111, 2008. 
-X. Xue and M. Kanzaki, High-Pressure delta-Al(OH)3 and delta-AlOOH Phases and Isostructural Hydroxides/Oxyhydroxides: New Structural Insights from High-Resolution 1H and 27Al NMR, Journal of Physical Chemistry B, 111, 13156-13166, 2007.
-X. Xue, M. Kanzaki, H. Fukui, E. Ito, and T. Hashimoto, Cation order and hydrogen bonding of high-pressure phases in the Al2O3-SiO2-H2O system: An NMR and Raman study, Am. Mineral., 91, 850-861, 2006
-T. Tsujimura, X. Xue, M. Kanzaki and M.J. Walter, Sulfur speciation and network structural changes in sodium silicate glasses: Constraints from NMR and Raman spectroscopy, Geochim. Cosmochim. Acta., 68, 5081-5101, 2004


トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS