中塚晃彦 山口大学 (受入教官:桂智男)

アルミナスペロフスカイトの単結晶育成(H9 中塚)

MgSiO3-Al0203 perovskite の結晶構造解析(H10,11 中塚)

Symmetry change of majorite solid-solution in the system Mg₃Al₂Si₃O₁₂-MgSiO₃

Akihiko Nakatsuka,^{1,*} Akira Yoshiasa,² Takamitsu Yamanaka,² Osamu Ohtaka,²

Tomoo Katsura,3 and Eiji Ito3

Am. Mineral. 84, 1135-1143 (1999).

Six single crystals of $Mg_3(Mg_xSi_xAl_{2.2x})Si_3O_{12}$ majorite solid-solution (x = 0.05, 0.13, 0.24, 0.38, 0.52, and 0.64) were first systematically synthesized at 20 GPa and 2000 °C with "6-8" type uniaxial split-sphere apparatus. The crystal structures were refined using single crystal X-ray diffraction method. The new discontinuities in compositional dependence of the molar volume, equivalent isotropic temperature factors (B_{eq}), and mean bond lengths were found at a certain composition between x = 0.24 and 0.38. From the polarization-microscopic observation, the single crystals in the compositional range $0 \le x \le 0.24$ show no birefringence, while those of x = 0.64 slightly have an optical anisotropy. Moreover, the cell symmetry of x = 0.64 obtained using synchrotron X-ray radiation resulted in tetragonal. From these results, the symmetry of majorite solid-solution in this system is considered to change from cubic to tetragonal at a certain composition within the range 0.24 < x < 0.38. On the basis of site splitting expected from compositional dependence of B_{eq} obtained by cubic refinement, the most probable space group in

the range $0.38 \le x \le 0.64$ is I4₁/acd (tetragonal), which is the maximal subgroup of the space group Ia 3 d (cubic). In consideration of the previous reports that the crystals in the range $0.8 \le x \le 1.0$ have the space group I4₁/a (tetragonal), the majorite solid-solution in this system undergoes the series of symmetry

changes, Ia $3 d \rightarrow I4_1/acd \rightarrow I4_1/a$, with increasing MgSiO₃ component. The symmetry changes from Ia $\overline{3}$ d to I4₁/acd cannot be explained by the cation ordering on the octahedral site. The existence of the strong electrostatic interaction between the dodecahedral (Mg²⁺) and tetrahedral (Si⁴⁺) cations was observed from atomic thermal motion and electron density distribution. In consideration of the fact that one of the site symmetries of the two nonequivalent tetrahedral sites in I4₁/acd structure loses the center of symmetry

with the symmetry reduction from Ia $\overline{3}$ d to I4₁/acd, the symmetry reduction may be caused by the electronic polarization of the cations due to the neighboring cation-cation interaction.