Report for the Joint Use/Research of the Institute for Planetary Materials, Okayama University for FY2024

05/28/2025

Category: □International Joint Research ☑General Joint Research □Joint Use of Facility □Workshop

Name of the research project: Sound velocity measurements of hydrous mantle minerals: Synthesis by Kawai-type multi-anvil apparatus.

Principal applicant: Chaoshuai Zhao

Affiliated institution and department: Laboratory of Seismology and Physics of Earth's Interior,

School of Earth and Space Sciences, University of Science and Technology of China

Collaborator Name: Takayuki Ishii

Affiliated institution and department: Institute for Planetary Materials (IPM), Okayama University

Research report:

1. Research purpose

Studying the physical properties of hydrated Al-bearing CaCl₂-type SiO₂ under high P-T conditions relevant to the entire mantle is essential for understanding the deep water cycle, as well as the chemistry and dynamics of many geological processes.

2. Conducted research

- 2.1 Raman spectra of hydrated Al-bearing CaCl₂-type SiO₂ were measured at high temperatures and pressures up to 800 K and 65 GPa;
- 2.2 Single crystal XRD of hydrated Al-bearing CaCl₂-type SiO₂ was performed at high pressure up to 65 GPa at 300 K.

2.3 Single crystal IR of hydrated Al-bearing CaCl₂-type SiO₂ was performed at high pressure up to 50 GPa at 300 K.

3. Research outcomes

Synchrotron infrared spectroscopy experiments were conducted on two representative singlecrystal (Al,H)-bearing CaCl₂-type SiO₂, Si_{0.929}Al_{0.071}O₂H_{0.033} [(Al_{7.1},H_{3.3})-SiO₂] and Si_{0.898}Al_{0.102}O₂H_{0.064} [(Al_{10.2},H_{6.4})-SiO₂] at high pressures up to 50 GPa at 300 K, respectively. the wavenumbers of OH mode increase monotonically again at ~30 GPa for (Al_{7.1},H_{3.3})-SiO₂ and ~27 GPa for (Al_{10.2},H_{6.4})-SiO₂, indicating the transition from disordered hydrogen to the hydrogen bond symmetrization states in CaCl₂-type SiO₂ (Fig. 1(a)). Raman spectroscopy independently confirms the hydrogen-bond symmetrization transition in (Al,H)-bearing CaCl₂-type SiO₂, consistent with synchrotron infrared observations (Fig. 1(b)). Synchrotron single-crystal XRD reveals that hydrogenbond symmetrization markedly enhances the incompressibility of CaCl₂-type SiO₂ phase.

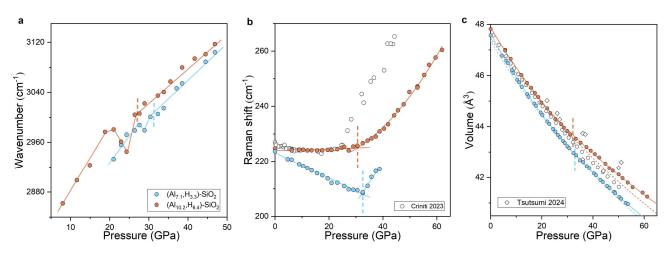


Fig. 1| Hydrogen bond symmetrization of (Al,H)-bearing CaCl₂-type SiO₂ at high pressure and 300 K.

Our high P-T Raman measurements reveal a pronounced temperature dependence for the hydrogen-bond symmetrization transition in (Al,H)-bearing CaCl₂-type SiO₂ (Fig. 2). As temperature increases, the transition pressure decreases sharply for both compositions examined. The transition is identified by a reversal in the pressure dependence of the A_{g1} Raman mode, consistent with the signature observed at 300 K.

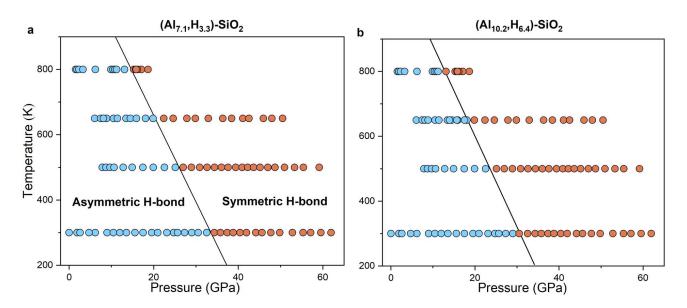


Fig. 2| Phase diagram of hydrogen bond symmetrization in (Al,H)-bearing CaCl₂-type SiO₂ at high pressures and temperatures.